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Diffusion coefficient increases with density in a 
lattice-gas model 
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Institute of Theoretical Phyrin, University of Wroelaw, Cybulskiego 36, 50-205, Wrodaw, 
Poland 

Received 27 March 1991 

Abtrsd.  We report computer simulations o f  the diffusion coefficient in a two-dimensional 
lattice Lorenfz gas with interacting panicles. The simulations show that the diffusion 
coefficient has a maximum as a function of the particle density in models with strongly 
correlated particle-scatterer collisions. 

Unusual behaviour of the diffusion coefficient has been revealed in molecular-dynamics 
simulations of a hard ellipsoid liquid crystal [l]. One of the two diffusion coefficients 
in the nematic-liquid-crystal phase increases with density, reaches a maximum and 
then decreases. In the lattice-gas models of atomic fluids the diffusion coefficient 
monotonically decreases with density [2-4] and computer simulation data agree very 
well with the Enskog diffusion coefficient [ 2 ] .  In this letter we introduce the simplest 
model-superposition of a lattice Lorentz gas and a cellular automata lattice gas- 
which describes an increase of the diffusion coefficient. We study density dependence 
of the diffusion coefficient both by the molecular-dynamics method and analytically 
within the Boltzmann approximation. 

The model consists of particles moving with constant speed on the square lattice 
in discrete time steps. At every time step particles are only allowed to be situated at 
lattice sites with velocities specified by the set of nearest-neighbour lattice vectors: 
e,=(l,O), e2=(0,-1), e,=(-l,O), e4=(0,1). Two particles cannot occupy the same 
site with the same velocity. The particles are characterized by density per link d = 
M/(4V) where M, V are numbers of particles and sites, respectively. 

The N fixed scatterers are randomly placed at lattice sites with probability (density 
of scatterers) p = N /  V. If a particle hits a scatterer its velocity direction changes. The 
scattering rules are stochastic and characterized by the transition matrix 

la  Y B Y\ 

where a, p and y are probabilities of transmission, reflection and deflection in 
an orthogonal direction, respectively. They obey the normalization condition 
a+B+Zy= 1. 
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The dynamics of the system consists of two steps. 
(1) Propagation. All particles move at one time step: each particle is shifted from 
initial position r to neighbouring site r+e ,  along its velocity direction e,. 
(2) Collision. Particles at all sites undergo collisions. 
(i) Particle-scatterer collision as described above when the scatterer is present at a site. 
If more than one particle hits the same scatterer at the same time then the particles 
cannot be scattered independently because of the assumption that only one particle 
can occupy one link. In such a case we choose the following rule: velocities of all 
particles at the site with a scatterer are simultaneously reflected with probability p ,  
transmitted with probability a and deflected with probability y.  
(ii) Particle-particle collision if there is no scatterer at a site occupied by two or more 
particles. In order to study the diffusion process we consider all particles to be 
distinguishable. The particle-particle collision rules are stochastic with equal prob- 
abilities for the output configurations, similarly as in a model for self-diffusion [3]. 
Two-particle collision rules are presented in figure 1. The post-collision configurations 
from figure l ( a )  are chosen with probability ;and those from figure l (b)  with probability 
$. In the case of three-particle and four-particle collisions the output configurations 
are obtained from permutations of an input configuration. 

-4-- 

I bl 

Figure I. Examples of a two-panicle head-on collision ( a ) .  right angle collision ( b ) .  

We performed simulations on a square lattice of 256x256 sites with periodic 
boundary conditions. The initial positions and velocities of particles were chosen 
randomly and stored. At sites with more than one particle (including the scatterer) the 
post-collision configurations of velocities were chosen randomly at each time step 
according to the rules. The actual position and velocity of each particle were stored 
in an additional array in order to keep the identity of particles. During the simulation 
the velocity autocorrelation function of the particle, 
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where (. . .) means average over number of particles and number of configurations of 
scatterers, was computed. The number of independent configurations of scatterers was 
greater than 50. The correlations were measured for several hundred time steps and 
the diffusion coefficient was obtained from the Green-Kubo formula [ 5 ]  for the 
two-dimensional case 

The results of simulations are presented in figure 2. 
Now we calculate the diffusion coefficient in the Boltzmann approximation, in 

which the particle-scatterer collisions as well as particle-particle collisions are 
considered uncorrelated. Let us consider the tagged particle in the sea of ‘fluid’ particles 
at equilibrium. Introducing ni(r, 1)-the probability of finding the tagged particle at 
moment f and at site r with velocity e,-tbe equation of motion can be written in the 
following form 

n j ( r + e j ,  f+ l ) = p  1 Pgnj(r, I)+( 1 -p )n ; ( r ,  [ ) + ( I  - p )  fl,nj(r, 1 )  (4) 

where the first term on the right-hand side describes the contribution from the collision 
of the tagged particle with a scatterer, the second term represents free motion and the 
last one describes the collision of the tagged particle with the fluid particles. The fl is 
a linearized particle-particle collision operator with three independent matrix elements 

J J 

fl,, = - i d ( l  - d ) * - 2 d 2 ( l  - d )  - i d 3  

f l l Z = i d (  1 - d ) * + $ d 2 ( 1  - d ) + a d ’  ( 5 )  

f l , ’ = a d ( l  - d ) 2 + f d 2 ( 1  - d ) + a d 3 .  

The matrix fl has the same form as the matrix P (see equation ( I ) ) .  Equation (4) 
allows us to calculate the velocity autocorrelation function of the tagged particle (1) 
and then the diffusion coefficient (2). Thus we obtain 

where 
A = 1 - p ( l  - a + P ) - ( l  - p ) ( 2 d  - $ d 2 + f d ’ ) .  (7) 

The increase of the diffusion coefficient at small densities of particles is the most 
striking feature of the computer simulation result presented in figure 2. We think that 
this effect can be explained as a result of competitions between particle-scatterer 
collisions and particle-particle collisions. 

In the pure Lorentz gas ( d  + 0) only particle-scatterer collisions are present. If 
reflection is admitted ( p  # 0) then collisions of the particle with scatterers are strongly 
correlated [ 5 , 6 ]  and some ring-type collisions (collisions leading to retracing by a 
particle of a part of its trajectory) play an  important role in the description of the 
diffusion process. The Boltzmann approximation does not ‘notice’ the ring collisions, 
therefore it predicts too large a diffusion coefficient. The result in the nearest scatterers 
approximation [ 6 ]  (plotted by a cross) deviates from the Boltzmann prediction by 
more than 200% in the cases presented in figure 2. 
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Figure 2. Diffusion coefficient as a function of density of particles per link for p =0.7, 
a = y = O . l  and for density of scatterers: ( a )  p = O . I ,  ( b )  p=O.O25. The symbols denote 
the computer simulation result and the full C U N ~  is the Boltzmann prediction. The broken 
curve S ~ N C S  as a guide for an eye. Statistical emor is smaller than size of the symbols. 

Inclusion of the collisions between particles in the lattice Lorentz gas leads to 
lowering the number of ring collisions. We shall call this effect decorrelation of 
collisions. It seems to he the main reason for an increase of the diffusion coefficient 
at low densities of particles. Moreover, in order to observe this effect the probability 
of reflection, 0, cannot be too small or, in other words, the particle-scatterer collisions 
should be correlated strongly enough. Finding the critical value pc,  below which the 
increase of the diffusion coefficient does not occur, is difficult in computer simulations. 
Lowering of p causes that the maximum of the diffusion coefficient becomes flat and 
it moves towards very small densities. 

The effect of the decorrelation of particle-scatterer collisions can be discussed by 
comparison of computer simulation data with results obtained within the Boltzmann 
approximation. We see in figure 2( b) that for small density of scatterers the Boltzmann 
result may agree well with computer data even at small densities of particles. For the 
same values of probabilities a, p, y but for a density of scatterers four times greater 
(see figure 2 ( a ) )  the Boltzmann result disagrees with computer data over the whole 
density range under study. The mean distance between scatterers (equal to p - ' )  is 
smaller in the gas with p =0.1 than in the gas with p =0.025. Hence the appearance 
of a short ring collision, in which the repeated part of the trajectory is short, is more 
probable forp = 0.1. The decorrelation of collisions means that a particle which retraces 
a part of its trajectory is hit by another particle. On average it can happen if the mean 
free distance between particles is smaller than the length of the repeated pan of the 
trajectory. Hence the decorrelation of collisions in a gas with p = 0.1 requires a higher 
density of particles than in the case with p = 0.025. 

In a model without reflection ( p  = 0) the diffusion coefficient obtained from com- 
puter simulation decreases monotonically with density. Moreover, the computer data 
agree well with the Boltzmann prediction. 

The diffusion in the three-dimensional version of the present model (for example 
on the simple cubic lattice) should possess qualitatively the same properties as the 

. 
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diffusion discussed in this letter. The model on the square lattice was chosen as the 
simplest model to perform computer simulation. 

I gratefully acknowledge the hospitality of the Intemational Centre for Theoretical 
Physics in Trieste where the computer simulation was performed. 
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